S.-T. Yau College Student Mathematics Contests 2022

Algebra and Number Theory

Solve every problem.

Problem 1.

(a) Let p ( x ) = a n x n + + a 1 x + a 0 R [ x ] p ( x ) = a n x n + + a 1 x + a 0 R [ x ] p(x)=a_(n)x^(n)+cdots+a_(1)x+a_(0)in R[x]p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in R[x]p(x)=anxn++a1x+a0R[x] be a polynomial over an integral domain R R RRR. Let K K KKK denote the fraction field of R R RRR. Suppose a / b K a / b K a//b in Ka / b \in Ka/bK is a root of p ( x ) p ( x ) p(x)p(x)p(x), where a , b R a , b R a,b in Ra, b \in Ra,bR and are relatively prime. Then, show that a a 0 a a 0 a∣a_(0)a \mid a_{0}aa0 and b a n b a n b∣a_(n)b \mid a_{n}ban.
(b) Prove that Q ( 2 , 3 ) = Q ( 2 + 3 ) Q ( 2 , 3 ) = Q ( 2 + 3 ) Q(sqrt2,sqrt3)=Q(sqrt2+sqrt3)\mathbf{Q}(\sqrt{2}, \sqrt{3})=\mathbf{Q}(\sqrt{2}+\sqrt{3})Q(2,3)=Q(2+3).

Solution:

(a) Easy.
(b) It suffices to show Q ( 2 , 3 ) Q ( 2 + 3 ) Q ( 2 , 3 ) Q ( 2 + 3 ) Q(sqrt2,sqrt3)subQ(sqrt2+sqrt3)\mathbf{Q}(\sqrt{2}, \sqrt{3}) \subset \mathbf{Q}(\sqrt{2}+\sqrt{3})Q(2,3)Q(2+3).
Let α = 2 + 3 α = 2 + 3 alpha=sqrt2+sqrt3\alpha=\sqrt{2}+\sqrt{3}α=2+3. It is a root of
p ( x ) = x 4 10 x 2 + 1 p ( x ) = x 4 10 x 2 + 1 p(x)=x^(4)-10x^(2)+1p(x)=x^{4}-10 x^{2}+1p(x)=x410x2+1
By (a), p ( x ) p ( x ) p(x)p(x)p(x) has no rational roots. We claim that p ( x ) p ( x ) p(x)p(x)p(x) is irreducible over Z Z Z\mathbf{Z}Z. Otherwise, p ( x ) = ( a + b x + c x 2 ) ( d + p ( x ) = a + b x + c x 2 ( d + p(x)=(a+bx+cx^(2))(d+p(x)=\left(a+b x+c x^{2}\right)(d+p(x)=(a+bx+cx2)(d+ e x + f x 2 e x + f x 2 ex+fx^(2)e x+f x^{2}ex+fx2 ). A direct computation will yield such a decomposition is impossible. Hence, p ( x ) p ( x ) p(x)p(x)p(x) is a minimal polynomial α α alpha\alphaα over Q Q Q\mathbf{Q}Q. As Q ( α ) Q ( α ) Q(alpha)\mathbf{Q}(\alpha)Q(α) is a vector subspace of Q ( 2 , 3 ) Q ( 2 , 3 ) Q(sqrt2,sqrt3)\mathbf{Q}(\sqrt{2}, \sqrt{3})Q(2,3), we obtain
4 = dim Q ( α ) dim Q ( 2 , 3 ) 4 4 = dim Q ( α ) dim Q ( 2 , 3 ) 4 4=dim Q(alpha) <= dim Q(sqrt2,sqrt3) <= 44=\operatorname{dim} \mathbf{Q}(\alpha) \leq \operatorname{dim} \mathbf{Q}(\sqrt{2}, \sqrt{3}) \leq 44=dimQ(α)dimQ(2,3)4
This implies the statement.
Problem 2. Let R R RRR be an integral domain with the fraction field K K KKK. An R R RRR-module P P PPP is projective if there is an R R RRR-module Q Q QQQ such that P Q F P Q F P o+Q~=FP \oplus Q \cong FPQF for some free R R RRR-module F F FFF. A fractional ideal A A AAA is an R R RRR-submodule of K K KKK such that A = d 1 I A = d 1 I A=d^(-1)IA=d^{-1} IA=d1I for some ideal I I III of R R RRR and a nonzero element d R d R d in Rd \in RdR. A fractional ideal A A AAA is called invertible if A B = R A B = R AB=RA B=RAB=R for some fractional ideal B B BBB.
Show that an invertible fractional ideal A A AAA is a projective R R RRR-module.
Solution: Assume that A A AAA is an invertible fractional ideal. Let A 1 A 1 A^(-1)A^{-1}A1 its inverse. Then
a 1 a 1 + + a n a n = 1 a 1 a 1 + + a n a n = 1 a_(1)a_(1)^(')+cdots+a_(n)a_(n)^(')=1a_{1} a_{1}^{\prime}+\cdots+a_{n} a_{n}^{\prime}=1a1a1++anan=1
for some a 1 , , a n A a 1 , , a n A a_(1),dots,a_(n)in Aa_{1}, \ldots, a_{n} \in Aa1,,anA and a 1 , , a n A a 1 , , a n A a_(1)^('),dots,a_(n)^(')inA^(')a_{1}^{\prime}, \ldots, a_{n}^{\prime} \in A^{\prime}a1,,anA since A A 1 = R A A 1 = R AA^(-1)=RA A^{-1}=RAA1=R. Let S S SSS be a free R R RRR-module of rank n n nnn, say, generated by y 1 , , y n y 1 , , y n y_(1),dots,y_(n)y_{1}, \ldots, y_{n}y1,,yn. Define φ : S A φ : S A varphi:S rarr A\varphi: S \rightarrow Aφ:SA by φ ( y i ) = a i φ y i = a i varphi(y_(i))=a_(i)\varphi\left(y_{i}\right)=a_{i}φ(yi)=ai and ψ : A S ψ : A S psi:A rarr S\psi: A \rightarrow Sψ:AS by φ ( c ) = c ( a 1 y 1 + a n y n ) φ ( c ) = c a 1 y 1 + a n y n varphi(c)=c(a_(1)^(')y_(1)+cdotsa_(n)^(')y_(n))\varphi(c)=c\left(a_{1}^{\prime} y_{1}+\cdots a_{n}^{\prime} y_{n}\right)φ(c)=c(a1y1+anyn). This makes sense because c a i R c a i R ca_(i)^(')in Rc a_{i}^{\prime} \in RcaiR. Obviously, φ ψ = i d A φ ψ = i d A varphi psi=id_(A)\varphi \psi=i d_{A}φψ=idA, hence A A AAA is a direct summand of S S SSS. In other words, A A AAA is a projective module.
Problem 3. Give a direct proof that the Lie algebra s ( 4 , C ) s ( 4 , C ) s(4,C)\mathfrak{s}(4, \mathbf{C})s(4,C) is isomorphic to the Lie algebra ( 6 , C ) ( 6 , C ) ℑ(6,C)\mathfrak{\Im}(6, \mathbf{C})(6,C). (You should construct a Lie algebra homomorphism and prove that it is an ismorphism; you should not use Dynkin diagrams or the classification theory of simple Lie algebras.)
Solution: We have the representation s l ( 4 , C ) g l ( W ) s l ( 4 , C ) g l ( W ) sl(4,C)rarrgl(W)\mathfrak{s l}(4, \mathbf{C}) \rightarrow \mathfrak{g l}(W)sl(4,C)gl(W) where W = 2 C 4 W = 2 C 4 W=^^^(2)C^(4)W=\wedge^{2} \mathbf{C}^{4}W=2C4. Let e 1 , e 2 , e 3 , e 4 e 1 , e 2 , e 3 , e 4 e_(1),e_(2),e_(3),e_(4)e_{1}, e_{2}, e_{3}, e_{4}e1,e2,e3,e4 be the standard basis of C 4 C 4 C^(4)\mathbf{C}^{4}C4. Then e 1 e 2 e 3 e 4 e 1 e 2 e 3 e 4 e_(1)^^e_(2)^^e_(3)^^e_(4)e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}e1e2e3e4 gives an identification 4 C 4 C 4 C 4 C ^^^(4)C^(4)~=C\wedge^{4} \mathbf{C}^{4} \cong \mathbf{C}4C4C. We define a complex symmetric bilinear form S : W × W C S : W × W C S:W xx W rarrCS: W \times W \rightarrow \mathbf{C}S:W×WC by
S ( θ , τ ) = θ τ 4 C 4 C S ( θ , τ ) = θ τ 4 C 4 C S(theta,tau)=theta^^tau in^^^(4)C^(4)~=CS(\theta, \tau)=\theta \wedge \tau \in \wedge^{4} \mathbf{C}^{4} \cong \mathbf{C}S(θ,τ)=θτ4C4C
for θ , τ W θ , τ W theta,tau in W\theta, \tau \in Wθ,τW. By writing out an explicit orthogonal basis, you can show that S S SSS is non-degenerate. Then, one checks that for any A S l ( 4 , C ) A S l ( 4 , C ) A inSl(4,C)A \in \mathfrak{S l}(4, \mathbf{C})ASl(4,C), we have
S ( A θ , τ ) + S ( θ , A τ ) = A θ τ + θ A τ = A ( θ τ ) = 0 S ( A θ , τ ) + S ( θ , A τ ) = A θ τ + θ A τ = A ( θ τ ) = 0 S(A theta,tau)+S(theta,A tau)=A theta^^tau+theta^^A tau=A(theta^^tau)=0S(A \theta, \tau)+S(\theta, A \tau)=A \theta \wedge \tau+\theta \wedge A \tau=A(\theta \wedge \tau)=0S(Aθ,τ)+S(θ,Aτ)=Aθτ+θAτ=A(θτ)=0
Note here that B l ( 4 , C ) B l ( 4 , C ) Bl(4,C)\mathfrak{B l}(4, \mathbf{C})Bl(4,C) acts trivially on 4 C 4 4 C 4 ^^^(4)C^(4)\wedge^{4} \mathbf{C}^{4}4C4.
Hence, we obtain a Lie algebra homomorphism g l ( 4 , C ) g d ( 6 , C ) g l ( 4 , C ) g d ( 6 , C ) gl(4,C)rarrgd(6,C)\mathfrak{g l}(4, \mathbf{C}) \rightarrow \mathfrak{g} \mathfrak{d}(6, \mathbf{C})gl(4,C)gd(6,C).This must be an isomorphism since both Lie algebras have the same dimension and l ( 4 , C ) l ( 4 , C ) l(4,C)\mathfrak{l}(4, \mathbf{C})l(4,C) is simple.
Problem 4. Let A = O K A = O K A=O_(K)A=\mathcal{O}_{K}A=OK be the ring of integers of a number field K K KKK. Given a nonzero ideal a A a A asub A\mathfrak{a} \subset AaA and an arbitrary nonzero element a a a a a inaa \in \mathfrak{a}aa, show that there exists b a b a b inab \in \mathfrak{a}ba such that a a aaa and b b bbb generate a a a\mathfrak{a}a (in particular, every ideal is 2-generated.
Solution: Since O K O K O_(K)\mathcal{O}_{K}OK is a Dedekind domain, every nonzero ideal of it has a unique factorization as a product of nonzero prime ideals. Write a A = p 1 n 1 p r n r ( p i a A = p 1 n 1 p r n r p i aA=p_(1)^(n_(1))cdotsp_(r)^(n_(r))(p_(i):}a A=\mathfrak{p}_{1}^{n_{1}} \cdots \mathfrak{p}_{r}^{n_{r}}\left(\mathfrak{p}_{i}\right.aA=p1n1prnr(pi 's are distinct nonzero prime ideals of A , n i N A , n i N A,n_(i)inNA, n_{i} \in \mathbf{N}A,niN ). Since a a a a a inaa \in \mathfrak{a}aa, we have a a a\mathfrak{a}a divides a A a A aAa AaA, so that a = p 1 m 1 p r m r a = p 1 m 1 p r m r a=p_(1)^(m_(1))cdotsp_(r)^(m_(r))\mathfrak{a}=\mathfrak{p}_{1}^{m_{1}} \cdots \mathfrak{p}_{r}^{m_{r}}a=p1m1prmr with 0 m i n i 0 m i n i 0 <= m_(i) <= n_(i)0 \leq m_{i} \leq n_{i}0mini. For each i i iii, pick x i p i m i p i m i + 1 x i p i m i p i m i + 1 x_(i)inp_(i)^(m_(i))\\p_(i)^(m_(i)+1)x_{i} \in \mathfrak{p}_{i}^{m_{i}} \backslash \mathfrak{p}_{i}^{m_{i}+1}xipimipimi+1. Since p i m i + 1 p i m i + 1 p_(i)^(m_(i)+1)\mathfrak{p}_{i}^{m_{i}+1}pimi+1 and p j m j + 1 p j m j + 1 p_(j)^(m_(j)+1)\mathfrak{p}_{j}^{m_{j}+1}pjmj+1 are coprime when i j i j i!=ji \neq jij, by the Chinese Remainder Theorem, the system of congruences b x i ( mod p i m i + 1 ) , 1 i r b x i mod p i m i + 1 , 1 i r b-=x_(i)(modp_(i)^(m_(i)+1)),1 <= i <= rb \equiv x_{i}\left(\bmod \mathfrak{p}_{i}^{m_{i}+1}\right), 1 \leq i \leq rbxi(modpimi+1),1ir has a solution b A b A b in Ab \in AbA.
By the congruence relation above, we see that b p i m i p i m i + 1 b p i m i p i m i + 1 b inp_(i)^(m_(i))\\p_(i)^(m_(i)+1)b \in \mathfrak{p}_{i}^{m_{i}} \backslash \mathfrak{p}_{i}^{m_{i}+1}bpimipimi+1 as well. So for each 1 i r 1 i r 1 <= i <= r1 \leq i \leq r1ir, the order of p i p i p_(i)\mathfrak{p}_{i}pi in the prime ideal factorization of b A b A bAb AbA is exactly m i m i m_(i)m_{i}mi. In other words
b A = p 1 m 1 p r m r q l k 1 q l k l , m i , k j > 0 b A = p 1 m 1 p r m r q l k 1 q l k l , m i , k j > 0 bA=p_(1)^(m_(1))cdotsp_(r)^(m_(r))q_(l)^(k_(1))cdotsq_(l)^(k_(l)),quadm_(i),k_(j) > 0b A=\mathfrak{p}_{1}^{m_{1}} \cdots \mathfrak{p}_{r}^{m_{r}} \mathfrak{q}_{l}^{k_{1}} \cdots \mathfrak{q}_{l}^{k_{l}}, \quad m_{i}, k_{j}>0bA=p1m1prmrqlk1qlkl,mi,kj>0
where q j q j q_(j)\mathfrak{q}_{j}qj 's are nonzero prime ideals different from those p i p i p_(i)\mathfrak{p}_{i}pi 's (if they exist). Therefore
a A + b A = p 1 min { m 1 , n 1 } p r min { m r , n r } q l min { 0 , k 1 } q l min { 0 , k l } = p 1 m 1 p r m r = a a A + b A = p 1 min m 1 , n 1 p r min m r , n r q l min 0 , k 1 q l min 0 , k l = p 1 m 1 p r m r = a aA+bA=p_(1)^(min{m_(1),n_(1)})cdotsp_(r)^(min{m_(r),n_(r)})q_(l)^(min{0,k_(1)})cdotsq_(l)^(min{0,k_(l)})=p_(1)^(m_(1))cdotsp_(r)^(m_(r))=aa A+b A=\mathfrak{p}_{1}^{\min \left\{m_{1}, n_{1}\right\}} \cdots \mathfrak{p}_{r}^{\min \left\{m_{r}, n_{r}\right\}} \mathfrak{q}_{l}^{\min \left\{0, k_{1}\right\}} \cdots \mathfrak{q}_{l}^{\min \left\{0, k_{l}\right\}}=\mathfrak{p}_{1}^{m_{1}} \cdots \mathfrak{p}_{r}^{m_{r}}=\mathfrak{a}aA+bA=p1min{m1,n1}prmin{mr,nr}qlmin{0,k1}qlmin{0,kl}=p1m1prmr=a
as desired.
Problem 5. Let p p ppp be a prime number and ζ p ζ p zeta_(p)\zeta_{p}ζp be a primitive p p ppp-th root of unity. Let K = Q ( ζ p ) K = Q ζ p K=Q(zeta_(p))K=\mathbf{Q}\left(\zeta_{p}\right)K=Q(ζp).
(a) Show that Φ p = i = 0 p 1 X i Φ p = i = 0 p 1 X i Phi_(p)=sum_(i=0)^(p-1)X^(i)\Phi_{p}=\sum_{i=0}^{p-1} X^{i}Φp=i=0p1Xi is the minimal polynomial of ζ p ζ p zeta_(p)\zeta_{p}ζp over Q Q Q\mathbf{Q}Q.
(b) Compute the trace Tr K / Q ( 1 ζ p ) Tr K / Q 1 ζ p Tr_(K//Q)(1-zeta_(p))\operatorname{Tr}_{K / \mathbf{Q}}\left(1-\zeta_{p}\right)TrK/Q(1ζp) and the norm N K / Q ( 1 ζ p ) N K / Q 1 ζ p N_(K//Q)(1-zeta_(p))\mathcal{N}_{K / \mathbf{Q}}\left(1-\zeta_{p}\right)NK/Q(1ζp).
(c) Show that ( 1 ζ p ) O K Z = p Z 1 ζ p O K Z = p Z (1-zeta_(p))O_(K)nnZ=pZ\left(1-\zeta_{p}\right) \mathcal{O}_{K} \cap \mathbf{Z}=p \mathbf{Z}(1ζp)OKZ=pZ and deduce that for all y O K y O K y inO_(K)y \in \mathcal{O}_{K}yOK, we have
Tr K / Q ( y ( 1 ζ p ) ) p Z Tr K / Q y 1 ζ p p Z Tr_(K//Q)(y(1-zeta_(p)))in pZ\operatorname{Tr}_{K / \mathbf{Q}}\left(y\left(1-\zeta_{p}\right)\right) \in p \mathbf{Z}TrK/Q(y(1ζp))pZ
(d) Determine explicitly the ring of integers of K K KKK.

Solution:

(a) Consider g ( X ) = Φ p ( X + 1 ) = ( X + 1 ) p 1 + + X + 1 g ( X ) = Φ p ( X + 1 ) = ( X + 1 ) p 1 + + X + 1 g(X)=Phi_(p)(X+1)=(X+1)^(p-1)+cdots+X+1g(X)=\Phi_{p}(X+1)=(X+1)^{p-1}+\cdots+X+1g(X)=Φp(X+1)=(X+1)p1++X+1. Then g ( X ) = 1 X [ ( X + 1 ) p 1 ] = i = 0 p 1 ( p i + 1 ) X i g ( X ) = 1 X ( X + 1 ) p 1 = i = 0 p 1 ( p i + 1 ) X i g(X)=(1)/(X)[(X+1)^(p)-1]=sum_(i=0)^(p-1)((p)/(i+1))X^(i)g(X)=\frac{1}{X}\left[(X+1)^{p}-1\right]=\sum_{i=0}^{p-1}\binom{p}{i+1} X^{i}g(X)=1X[(X+1)p1]=i=0p1(pi+1)Xi. Notice that for all 0 i p 2 0 i p 2 0 <= i <= p-20 \leq i \leq p-20ip2, we have p | ( p i + 1 ) p ( p i + 1 ) p|((p)/(i+1)):}p \left\lvert\,\binom{ p}{i+1}\right.p|(pi+1), but p 2 + ( p 1 ) = p p 2 + ( p 1 ) = p p^(2)+((p)/(1))=pp^{2}+\binom{p}{1}=pp2+(p1)=p. By the Eisenstein's criterion, g ( X ) g ( X ) g(X)g(X)g(X) is irreducible over Q Q Q\mathbf{Q}Q, so is Φ p ( X ) = g ( X 1 ) Φ p ( X ) = g ( X 1 ) Phi_(p)(X)=g(X-1)\Phi_{p}(X)=g(X-1)Φp(X)=g(X1). Since ζ p ζ p zeta_(p)\zeta_{p}ζp is a root of X p 1 = ( X 1 ) Φ p ( X ) X p 1 = ( X 1 ) Φ p ( X ) X^(p)-1=(X-1)Phi_(p)(X)X^{p}-1=(X-1) \Phi_{p}(X)Xp1=(X1)Φp(X) but not of ( X 1 ) ( X 1 ) (X-1)(X-1)(X1), we have Φ p ( ζ p ) = 0 Φ p ζ p = 0 Phi_(p)(zeta_(p))=0\Phi_{p}\left(\zeta_{p}\right)=0Φp(ζp)=0. Therefore, Φ p ( X ) Φ p ( X ) Phi_(p)(X)\Phi_{p}(X)Φp(X), being monic, is the minimal polynomial of ζ p ζ p zeta_(p)\zeta_{p}ζp over Q Q Q\mathbf{Q}Q.
(b) For each 1 i p 1 1 i p 1 1 <= i <= p-11 \leq i \leq p-11ip1, we have ζ p i K ζ p i K zeta_(p)^(i)in K\zeta_{p}^{i} \in KζpiK is also a root of X p 1 = ( X 1 ) Φ p ( X ) X p 1 = ( X 1 ) Φ p ( X ) X^(p)-1=(X-1)Phi_(p)(X)X^{p}-1=(X-1) \Phi_{p}(X)Xp1=(X1)Φp(X) but not of ( X 1 ) ( X 1 ) (X-1)(X-1)(X1), we have Φ p ( ζ p i ) = 0 Φ p ζ p i = 0 Phi_(p)(zeta_(p)^(i))=0\Phi_{p}\left(\zeta_{p}^{i}\right)=0Φp(ζpi)=0. Thus K / Q K / Q K//QK / \mathbf{Q}K/Q is a Galois extension whose Galois group is Gal ( K / Q ) = { σ i ; σ i ( ζ p ) = ζ p i , 1 i p 1 } Gal ( K / Q ) = σ i ; σ i ζ p = ζ p i , 1 i p 1 Gal(K//Q)={sigma_(i);sigma_(i)(zeta_(p))=zeta_(p)^(i),1 <= i <= p-1}\operatorname{Gal}(K / \mathbf{Q})=\left\{\sigma_{i} ; \sigma_{i}\left(\zeta_{p}\right)=\zeta_{p}^{i}, 1 \leq i \leq p-1\right\}Gal(K/Q)={σi;σi(ζp)=ζpi,1ip1}. So
Tr K / Q = i = 1 p 1 ( 1 ζ p i ) = ( p 1 ) i = 1 p 1 ζ p i = ( p 1 ) ( Φ p ( ζ p ) 1 ) = ( p 1 ) ( 1 ) = p Tr K / Q = i = 1 p 1 1 ζ p i = ( p 1 ) i = 1 p 1 ζ p i = ( p 1 ) Φ p ζ p 1 = ( p 1 ) ( 1 ) = p Tr_(K//Q)=sum_(i=1)^(p-1)(1-zeta_(p)^(i))=(p-1)-sum_(i=1)^(p-1)zeta_(p)^(i)=(p-1)-(Phi_(p)(zeta_(p))-1)=(p-1)-(-1)=p\operatorname{Tr}_{K / \mathbf{Q}}=\sum_{i=1}^{p-1}\left(1-\zeta_{p}^{i}\right)=(p-1)-\sum_{i=1}^{p-1} \zeta_{p}^{i}=(p-1)-\left(\Phi_{p}\left(\zeta_{p}\right)-1\right)=(p-1)-(-1)=pTrK/Q=i=1p1(1ζpi)=(p1)i=1p1ζpi=(p1)(Φp(ζp)1)=(p1)(1)=p
and
N K / Q = i = 1 p 1 ( 1 ζ p i ) = Φ p ( 1 ) = i = 0 p 1 1 i = p N K / Q = i = 1 p 1 1 ζ p i = Φ p ( 1 ) = i = 0 p 1 1 i = p N_(K//Q)=prod_(i=1)^(p-1)(1-zeta_(p)^(i))=Phi_(p)(1)=sum_(i=0)^(p-1)1^(i)=p\mathcal{N}_{K / \mathbf{Q}}=\prod_{i=1}^{p-1}\left(1-\zeta_{p}^{i}\right)=\Phi_{p}(1)=\sum_{i=0}^{p-1} 1^{i}=pNK/Q=i=1p1(1ζpi)=Φp(1)=i=0p11i=p
(c) Notice that ζ p ζ p zeta_(p)\zeta_{p}ζp is a root of a monic Φ p Z [ X ] Φ p Z [ X ] Phi_(p)inZ[X]\Phi_{p} \in \mathbf{Z}[X]ΦpZ[X], so ζ p ζ p zeta_(p)\zeta_{p}ζp is integral over Z Z Z\mathbf{Z}Z. For each m Z m Z m inZm \in \mathbf{Z}mZ, let z = m i = 2 p 1 ( 1 ζ p i ) O K z = m i = 2 p 1 1 ζ p i O K z=mprod_(i=2)^(p-1)(1-zeta_(p)^(i))inO_(K)z=m \prod_{i=2}^{p-1}\left(1-\zeta_{p}^{i}\right) \in \mathcal{O}_{K}z=mi=2p1(1ζpi)OK. Then z ( 1 ζ p ) = m i = 1 p 1 ( 1 ζ p i ) = m p z 1 ζ p = m i = 1 p 1 1 ζ p i = m p z(1-zeta_(p))=mprod_(i=1)^(p-1)(1-zeta_(p)^(i))=mpz\left(1-\zeta_{p}\right)=m \prod_{i=1}^{p-1}\left(1-\zeta_{p}^{i}\right)=m pz(1ζp)=mi=1p1(1ζpi)=mp. Thus p Z ( 1 ζ p ) O K Z p Z 1 ζ p O K Z pZsub(1-zeta_(p))O_(K)nnZp \mathbf{Z} \subset\left(1-\zeta_{p}\right) \mathcal{O}_{K} \cap \mathbf{Z}pZ(1ζp)OKZ. On the other hand, suppose z O K z O K z inO_(K)z \in \mathcal{O}_{K}zOK satisfies
m = z ( 1 ζ p ) Z m = z 1 ζ p Z m=z(1-zeta_(p))inZm=z\left(1-\zeta_{p}\right) \in \mathbf{Z}m=z(1ζp)Z. Taking norms on both sides, we get m p = N K / Q ( z ) p m p = N K / Q ( z ) p m^(p)=N_(K//Q)(z)pm^{p}=\mathcal{N}_{K / \mathbf{Q}}(z) pmp=NK/Q(z)p. Since z z zzz is integral, N K / Q ( z ) Z N K / Q ( z ) Z N_(K//Q)(z)inZ\mathcal{N}_{K / \mathbf{Q}}(z) \in \mathbf{Z}NK/Q(z)Z, we have p m p p m p p∣m^(p)p \mid m^{p}pmp, so p m p m p∣mp \mid mpm. Thus ( 1 ζ p ) O K Z p Z 1 ζ p O K Z p Z (1-zeta_(p))O_(K)nnZsub pZ\left(1-\zeta_{p}\right) \mathcal{O}_{K} \cap \mathbf{Z} \subset p \mathbf{Z}(1ζp)OKZpZ. As a consequence, ( 1 ζ p ) O K Z = p Z 1 ζ p O K Z = p Z (1-zeta_(p))O_(K)nnZ=pZ\left(1-\zeta_{p}\right) \mathcal{O}_{K} \cap \mathbf{Z}=p \mathbf{Z}(1ζp)OKZ=pZ.
Now take any y O K y O K y inO_(K)y \in \mathcal{O}_{K}yOK. Observe that for each 1 i p 1 1 i p 1 1 <= i <= p-11 \leq i \leq p-11ip1, we have
σ i ( y ( 1 ζ p ) ) = σ i ( y ) ( 1 ζ p i ) = ( 1 ζ p ) ( 1 + ζ p + + ζ p i 1 ) σ i ( y ) ( 1 ζ p ) O K σ i y 1 ζ p = σ i ( y ) 1 ζ p i = 1 ζ p 1 + ζ p + + ζ p i 1 σ i ( y ) 1 ζ p O K sigma_(i)(y(1-zeta_(p)))=sigma_(i)(y)(1-zeta_(p)^(i))=(1-zeta_(p))(1+zeta_(p)+cdots+zeta_(p)^(i-1))sigma_(i)(y)in(1-zeta_(p))O_(K)\sigma_{i}\left(y\left(1-\zeta_{p}\right)\right)=\sigma_{i}(y)\left(1-\zeta_{p}^{i}\right)=\left(1-\zeta_{p}\right)\left(1+\zeta_{p}+\cdots+\zeta_{p}^{i-1}\right) \sigma_{i}(y) \in\left(1-\zeta_{p}\right) \mathcal{O}_{K}σi(y(1ζp))=σi(y)(1ζpi)=(1ζp)(1+ζp++ζpi1)σi(y)(1ζp)OK
so Tr K / Q ( y ( 1 ζ p ) ) = i = 1 p 1 σ i ( y ( 1 ζ p ) ) ( 1 ζ p ) O K Tr K / Q y 1 ζ p = i = 1 p 1 σ i y 1 ζ p 1 ζ p O K Tr_(K//Q)(y(1-zeta_(p)))=sum_(i=1)^(p-1)sigma_(i)(y(1-zeta_(p)))in(1-zeta_(p))O_(K)\operatorname{Tr}_{K / \mathbf{Q}}\left(y\left(1-\zeta_{p}\right)\right)=\sum_{i=1}^{p-1} \sigma_{i}\left(y\left(1-\zeta_{p}\right)\right) \in\left(1-\zeta_{p}\right) \mathcal{O}_{K}TrK/Q(y(1ζp))=i=1p1σi(y(1ζp))(1ζp)OK as well. On the other hand, y ( 1 ζ p ) O K y 1 ζ p O K y(1-zeta_(p))inO_(K)y\left(1-\zeta_{p}\right) \in \mathcal{O}_{K}y(1ζp)OK, so its trace is in Z Z Z\mathbf{Z}Z. Therefore Tr K / Q ( y ( 1 ζ p ) ) ( 1 ζ p ) O K Z = p Z Tr K / Q y 1 ζ p 1 ζ p O K Z = p Z Tr_(K//Q)(y(1-zeta_(p)))in(1-zeta_(p))O_(K)nnZ=pZ\operatorname{Tr}_{K / \mathbf{Q}}\left(y\left(1-\zeta_{p}\right)\right) \in\left(1-\zeta_{p}\right) \mathcal{O}_{K} \cap \mathbf{Z}=p \mathbf{Z}TrK/Q(y(1ζp))(1ζp)OKZ=pZ.
(d) Let y = b 0 + b 1 ζ p + + b p 1 ζ p p 1 O K y = b 0 + b 1 ζ p + + b p 1 ζ p p 1 O K y=b_(0)+b_(1)zeta_(p)+cdots+b_(p-1)zeta_(p)^(p-1)inO_(K)y=b_{0}+b_{1} \zeta_{p}+\cdots+b_{p-1} \zeta_{p}^{p-1} \in \mathcal{O}_{K}y=b0+b1ζp++bp1ζpp1OK where b i Q b i Q b_(i)inQb_{i} \in \mathbf{Q}biQ. Notice that for any 1 i p 1 , ζ p i 1 i p 1 , ζ p i 1 <= i <= p-1,zeta_(p)^(i)1 \leq i \leq p-1, \zeta_{p}^{i}1ip1,ζpi is a conjugate of ζ p ζ p zeta_(p)\zeta_{p}ζp over Q Q Q\mathbf{Q}Q, so
Tr K / Q ( ζ p i ) = Tr K / Q ( ζ p ) = ζ p + ζ p 2 + + ζ p p 1 = 1 Tr K / Q ζ p i = Tr K / Q ζ p = ζ p + ζ p 2 + + ζ p p 1 = 1 Tr_(K//Q)(zeta_(p)^(i))=Tr_(K//Q)(zeta_(p))=zeta_(p)+zeta_(p)^(2)+cdots+zeta_(p)^(p-1)=-1\operatorname{Tr}_{K / \mathbf{Q}}\left(\zeta_{p}^{i}\right)=\operatorname{Tr}_{K / \mathbf{Q}}\left(\zeta_{p}\right)=\zeta_{p}+\zeta_{p}^{2}+\cdots+\zeta_{p}^{p-1}=-1TrK/Q(ζpi)=TrK/Q(ζp)=ζp+ζp2++ζpp1=1
Set b p = b 0 b p = b 0 b_(p)=b_(0)b_{p}=b_{0}bp=b0, then for any 1 l p 1 1 l p 1 1 <= l <= p-11 \leq l \leq p-11lp1, we have
p Z Tr K / Q ( ( ζ l y ) ( 1 ζ p ) ) = i = 0 p 1 b i Tr K / Q ( ζ p i + l ζ p i + l + 1 ) = b p l Tr K / Q ( 1 ζ p ) + b p l 1 Tr K / Q ( ζ p p 1 1 ) = p ( b p l b p l 1 ) p Z Tr K / Q ζ l y 1 ζ p = i = 0 p 1 b i Tr K / Q ζ p i + l ζ p i + l + 1 = b p l Tr K / Q 1 ζ p + b p l 1 Tr K / Q ζ p p 1 1 = p b p l b p l 1 {:[pZ∋Tr_(K//Q)((zeta^(l)y)(1-zeta_(p)))=sum_(i=0)^(p-1)b_(i)Tr_(K//Q)(zeta_(p)^(i+l)-zeta_(p)^(i+l+1))],[=b_(p-l)Tr_(K//Q)(1-zeta_(p))+b_(p-l-1)Tr_(K//Q)(zeta_(p)^(p-1)-1)],[=p(b_(p-l)-b_(p-l-1))]:}\begin{aligned} p \mathbf{Z} \ni \operatorname{Tr}_{K / \mathbf{Q}}\left(\left(\zeta^{l} y\right)\left(1-\zeta_{p}\right)\right) & =\sum_{i=0}^{p-1} b_{i} \operatorname{Tr}_{K / \mathbf{Q}}\left(\zeta_{p}^{i+l}-\zeta_{p}^{i+l+1}\right) \\ & =b_{p-l} \operatorname{Tr}_{K / \mathbf{Q}}\left(1-\zeta_{p}\right)+b_{p-l-1} \operatorname{Tr}_{K / \mathbf{Q}}\left(\zeta_{p}^{p-1}-1\right) \\ & =p\left(b_{p-l}-b_{p-l-1}\right) \end{aligned}pZTrK/Q((ζly)(1ζp))=i=0p1biTrK/Q(ζpi+lζpi+l+1)=bplTrK/Q(1ζp)+bpl1TrK/Q(ζpp11)=p(bplbpl1)
which implies that b p l b p l 1 Z b p l b p l 1 Z b_(p-l)-b_(p-l-1)inZb_{p-l}-b_{p-l-1} \in \mathbf{Z}bplbpl1Z. Thus b i b 0 Z b i b 0 Z b_(i)-b_(0)inZb_{i}-b_{0} \in \mathbf{Z}bib0Z for all 1 i p 1 1 i p 1 1 <= i <= p-11 \leq i \leq p-11ip1. Notice that
y i = 1 p 1 ( b i b 0 ) ζ p i = b 0 ( 1 + ζ p + + ζ p p 1 ) = 0 y i = 1 p 1 b i b 0 ζ p i = b 0 1 + ζ p + + ζ p p 1 = 0 y-sum_(i=1)^(p-1)(b_(i)-b_(0))zeta_(p)^(i)=b_(0)(1+zeta_(p)+cdots+zeta_(p)^(p-1))=0y-\sum_{i=1}^{p-1}\left(b_{i}-b_{0}\right) \zeta_{p}^{i}=b_{0}\left(1+\zeta_{p}+\cdots+\zeta_{p}^{p-1}\right)=0yi=1p1(bib0)ζpi=b0(1+ζp++ζpp1)=0
so y = i = 1 p 1 ( b i b 0 ) ζ p i Z [ ζ p ] y = i = 1 p 1 b i b 0 ζ p i Z ζ p y=sum_(i=1)^(p-1)(b_(i)-b_(0))zeta_(p)^(i)inZ[zeta_(p)]y=\sum_{i=1}^{p-1}\left(b_{i}-b_{0}\right) \zeta_{p}^{i} \in \mathbf{Z}\left[\zeta_{p}\right]y=i=1p1(bib0)ζpiZ[ζp]. Therefore O K = Z [ ζ p ] O K = Z ζ p O_(K)=Z[zeta_(p)]\mathcal{O}_{K}=\mathbf{Z}\left[\zeta_{p}\right]OK=Z[ζp].
Problem 6. Let θ Q ¯ θ Q ¯ theta in bar(Q)\theta \in \overline{\mathbf{Q}}θQ¯ be a root of the polynomial f ( X ) = X 3 + 12 X 2 + 8 X + 1 f ( X ) = X 3 + 12 X 2 + 8 X + 1 f(X)=X^(3)+12X^(2)+8X+1f(X)=X^{3}+12 X^{2}+8 X+1f(X)=X3+12X2+8X+1. Let K = Q ( θ ) K = Q ( θ ) K=Q(theta)K=\mathbf{Q}(\theta)K=Q(θ).
(a) Let g ( X ) = X 3 + p X + q Z [ X ] g ( X ) = X 3 + p X + q Z [ X ] g(X)=X^(3)+pX+q inZ[X]g(X)=X^{3}+p X+q \in \mathbf{Z}[X]g(X)=X3+pX+qZ[X]. Compute the discriminant disc ( g ) disc ( g ) disc(g)\operatorname{disc}(g)disc(g) of g ( X ) g ( X ) g(X)g(X)g(X) in terms of p p ppp, q q qqq.
(b) Show that f ( X ) f ( X ) f(X)f(X)f(X) is irreducible over Q Q Q\mathbf{Q}Q.
(c) Compute the discriminant d K ( 1 , θ , θ 2 ) d K 1 , θ , θ 2 d_(K)(1,theta,theta^(2))d_{K}\left(1, \theta, \theta^{2}\right)dK(1,θ,θ2). Please provide necessary details.
(d) For any arbitrary number field F F FFF of degree n n nnn, let a 1 , a 2 , , a n O F a 1 , a 2 , , a n O F a_(1),a_(2),dots,a_(n)inO_(F)a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{O}_{F}a1,a2,,anOF. Find and verify a sufficient condition in terms of the discriminant d F ( a 1 , , a n ) d F a 1 , , a n d_(F)(a_(1),dots,a_(n))d_{F}\left(a_{1}, \ldots, a_{n}\right)dF(a1,,an) that the a 1 , , a n a 1 , , a n a_(1),dots,a_(n)a_{1}, \ldots, a_{n}a1,,an form an integral basis of F F FFF.
(e) Write down an explicit integral basis of K K KKK in terms of θ θ theta\thetaθ by using the above sufficient condition you have found. Please justify your arguments.

Solution:

(a) Let α 1 , α 2 , α 3 Q ¯ α 1 , α 2 , α 3 Q ¯ alpha_(1),alpha_(2),alpha_(3)in bar(Q)\alpha_{1}, \alpha_{2}, \alpha_{3} \in \overline{\mathbf{Q}}α1,α2,α3Q¯ be three roots of g g ggg, then by Viète's theorem
α 1 α 2 + α 2 α 3 + α 3 α 1 = p , α 1 α 2 α 3 = q α 1 α 2 + α 2 α 3 + α 3 α 1 = p , α 1 α 2 α 3 = q alpha_(1)alpha_(2)+alpha_(2)alpha_(3)+alpha_(3)alpha_(1)=p,quadalpha_(1)alpha_(2)alpha_(3)=-q\alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{3}+\alpha_{3} \alpha_{1}=p, \quad \alpha_{1} \alpha_{2} \alpha_{3}=-qα1α2+α2α3+α3α1=p,α1α2α3=q
According to the theory of symmetric polynomials, disc ( g ) = [ ( α 1 α 2 ) ( α 2 α 3 ) ( α 3 α 1 ) ] 2 disc ( g ) = α 1 α 2 α 2 α 3 α 3 α 1 2 disc(g)=[(alpha_(1)-alpha_(2))(alpha_(2)-alpha_(3))(alpha_(3)-alpha_(1))]^(2)\operatorname{disc}(g)=\left[\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{3}-\alpha_{1}\right)\right]^{2}disc(g)=[(α1α2)(α2α3)(α3α1)]2 can be expressed as a polynomial H H HHH of p , q p , q p,qp, qp,q. For any λ Q ¯ λ Q ¯ lambda in bar(Q)\lambda \in \overline{\mathbf{Q}}λQ¯, consider
g λ ( X ) = ( X λ α 1 ) ( X λ α 2 ) ( X λ α 3 ) = X 3 + λ 2 p X + λ 3 q X g λ ( X ) = X λ α 1 X λ α 2 X λ α 3 = X 3 + λ 2 p X + λ 3 q X g_(lambda)(X)=(X-lambdaalpha_(1))(X-lambdaalpha_(2))(X-lambdaalpha_(3))=X^(3)+lambda^(2)pX+lambda^(3)qXg_{\lambda}(X)=\left(X-\lambda \alpha_{1}\right)\left(X-\lambda \alpha_{2}\right)\left(X-\lambda \alpha_{3}\right)=X^{3}+\lambda^{2} p X+\lambda^{3} q Xgλ(X)=(Xλα1)(Xλα2)(Xλα3)=X3+λ2pX+λ3qX
we obtain that H ( λ 2 p , λ 3 q ) = λ 6 H ( p , q ) H λ 2 p , λ 3 q = λ 6 H ( p , q ) H(lambda^(2)p,lambda^(3)q)=lambda^(6)H(p,q)H\left(\lambda^{2} p, \lambda^{3} q\right)=\lambda^{6} H(p, q)H(λ2p,λ3q)=λ6H(p,q). Thus H ( p , q ) H ( p , q ) H(p,q)H(p, q)H(p,q) has an expression such that each of its monomials has shape r i , j p i q j r i , j p i q j r_(i,j)p^(i)q^(j)r_{i, j} p^{i} q^{j}ri,jpiqj with r i , j Q ¯ r i , j Q ¯ r_(i,j)in bar(Q)r_{i, j} \in \overline{\mathbf{Q}}ri,jQ¯ and 2 i + 3 j = 6 2 i + 3 j = 6 2i+3j=62 i+3 j=62i+3j=6. Thus ( i , j ) = ( 3 , 0 ) ( i , j ) = ( 3 , 0 ) (i,j)=(3,0)(i, j)=(3,0)(i,j)=(3,0) or ( 0 , 2 ) ( 0 , 2 ) (0,2)(0,2)(0,2), which means disc ( g ) = a p 3 + b q 2 disc ( g ) = a p 3 + b q 2 disc(g)=ap^(3)+bq^(2)\operatorname{disc}(g)=a p^{3}+b q^{2}disc(g)=ap3+bq2 for some fixed a , b Q ¯ a , b Q ¯ a,b in bar(Q)a, b \in \overline{\mathbf{Q}}a,bQ¯
Let g ( X ) = X 3 X = X ( X 1 ) ( X + 1 ) g ( X ) = X 3 X = X ( X 1 ) ( X + 1 ) g(X)=X^(3)-X=X(X-1)(X+1)g(X)=X^{3}-X=X(X-1)(X+1)g(X)=X3X=X(X1)(X+1), we have
a ( 1 ) 3 + b 0 2 = [ ( 0 1 ) ( 0 ( 1 ) ) ( 1 ( 1 ) ) ] 2 = 4 a = 4 . a ( 1 ) 3 + b 0 2 = [ ( 0 1 ) ( 0 ( 1 ) ) ( 1 ( 1 ) ) ] 2 = 4 a = 4 . a*(-1)^(3)+b*0^(2)=[(0-1)(0-(-1))(1-(-1))]^(2)=4=>a=-4.a \cdot(-1)^{3}+b \cdot 0^{2}=[(0-1)(0-(-1))(1-(-1))]^{2}=4 \Rightarrow a=-4 .a(1)3+b02=[(01)(0(1))(1(1))]2=4a=4.
Let g ( X ) = X 3 1 = X ( X ω ) ( X ω 1 ) g ( X ) = X 3 1 = X ( X ω ) X ω 1 g(X)=X^(3)-1=X(X-omega)(X-omega^(-1))g(X)=X^{3}-1=X(X-\omega)\left(X-\omega^{-1}\right)g(X)=X31=X(Xω)(Xω1), where ω = e 2 π i / 3 ω = e 2 π i / 3 omega=e^(2pi i//3)\omega=e^{2 \pi i / 3}ω=e2πi/3, then we have
a 0 3 + b ( 1 ) 2 = [ ( 1 ω ) ( 1 ω 1 ) ( ω ω 1 ) ] 2 = ( 1 ω ) 6 = ( 3 e 2 π i / 6 ) 6 = 27 b = 27 a 0 3 + b ( 1 ) 2 = ( 1 ω ) 1 ω 1 ω ω 1 2 = ( 1 ω ) 6 = 3 e 2 π i / 6 6 = 27 b = 27 a*0^(3)+b*(-1)^(2)=[(1-omega)(1-omega^(-1))(omega-omega^(-1))]^(2)=(1-omega)^(6)=(sqrt(-3)e^(2pi i//6))^(6)=-27=>b=-27a \cdot 0^{3}+b \cdot(-1)^{2}=\left[(1-\omega)\left(1-\omega^{-1}\right)\left(\omega-\omega^{-1}\right)\right]^{2}=(1-\omega)^{6}=\left(\sqrt{-3} e^{2 \pi i / 6}\right)^{6}=-27 \Rightarrow b=-27a03+b(1)2=[(1ω)(1ω1)(ωω1)]2=(1ω)6=(3e2πi/6)6=27b=27
Therefore disc ( g ) = ( 4 p 3 + 27 q 2 ) disc ( g ) = 4 p 3 + 27 q 2 disc(g)=-(4p^(3)+27q^(2))\operatorname{disc}(g)=-\left(4 p^{3}+27 q^{2}\right)disc(g)=(4p3+27q2).
(b) Suppose f f fff is reducible over Q Q Q\mathbf{Q}Q, then it has a factor X τ X τ X-tauX-\tauXτ where τ Q τ Q tau inQ\tau \in \mathbf{Q}τQ. Since τ τ tau\tauτ is a root of f ( X ) f ( X ) f(X)f(X)f(X), a monic integer polynomial, we have τ O K τ O K tau inO_(K)\tau \in \mathcal{O}_{K}τOK. Thus τ Q O K = Z τ Q O K = Z tau inQnnO_(K)=Z\tau \in \mathbf{Q} \cap \mathcal{O}_{K}=\mathbf{Z}τQOK=Z. Notice that τ ( τ 2 + 12 τ + 8 ) = 1 τ τ 2 + 12 τ + 8 = 1 tau(tau^(2)+12 tau+8)=-1\tau\left(\tau^{2}+12 \tau+8\right)=-1τ(τ2+12τ+8)=1, we obtain that τ 1 τ 1 tau∣1\tau \mid 1τ1. Thus τ = ± 1 τ = ± 1 tau=+-1\tau= \pm 1τ=±1. But a direct computation shows that neither of ± 1 ± 1 +-1\pm 1±1 is a root of f ( X ) f ( X ) f(X)f(X)f(X), a contradiction.
(c) By (b) we see that f ( X ) f ( X ) f(X)f(X)f(X) is the minimal polynomial of θ θ theta\thetaθ over Q Q Q\mathbf{Q}Q. Let θ 1 = θ , θ 2 , θ 3 θ 1 = θ , θ 2 , θ 3 theta_(1)=theta,theta_(2),theta_(3)\theta_{1}=\theta, \theta_{2}, \theta_{3}θ1=θ,θ2,θ3 be the three roots of f ( X ) f ( X ) f(X)f(X)f(X). Then
d K ( 1 , θ , θ 2 ) = det ( 1 θ 1 θ 1 2 1 θ 2 θ 2 2 1 θ 3 θ 3 2 ) 2 = [ ( θ 1 θ 2 ) ( θ 2 θ 3 ) ( θ 3 θ 1 ) ] 2 = [ ( ( θ 1 + 4 ) ( θ 2 + 4 ) ) ( ( θ 2 + 4 ) ( θ 3 + 4 ) ) ( ( θ 3 + 4 ) ( θ 1 + 4 ) ) ] 2 = disc ( f ( X 4 ) ) = disc ( X 3 40 X + 97 ) = [ 4 ( 40 ) 3 + 3 97 2 ] = 1957 d K 1 , θ , θ 2 = det 1 θ 1 θ 1 2 1 θ 2 θ 2 2 1 θ 3 θ 3 2 2 = θ 1 θ 2 θ 2 θ 3 θ 3 θ 1 2 = θ 1 + 4 θ 2 + 4 θ 2 + 4 θ 3 + 4 θ 3 + 4 θ 1 + 4 2 = disc ( f ( X 4 ) ) = disc X 3 40 X + 97 = 4 ( 40 ) 3 + 3 97 2 = 1957 {:[d_(K)(1,theta,theta^(2))=det ([1,theta_(1),theta_(1)^(2)],[1,theta_(2),theta_(2)^(2)],[1,theta_(3),theta_(3)^(2)])^(2)],[=[(theta_(1)-theta_(2))(theta_(2)-theta_(3))(theta_(3)-theta_(1))]^(2)],[=[((theta_(1)+4)-(theta_(2)+4))((theta_(2)+4)-(theta_(3)+4))((theta_(3)+4)-(theta_(1)+4))]^(2)],[=disc(f(X-4))],[=disc(X^(3)-40 X+97)],[=-[4*(-40)^(3)+3*97^(2)]],[=1957]:}\begin{aligned} d_{K}\left(1, \theta, \theta^{2}\right) & =\operatorname{det}\left(\begin{array}{lll} 1 & \theta_{1} & \theta_{1}^{2} \\ 1 & \theta_{2} & \theta_{2}^{2} \\ 1 & \theta_{3} & \theta_{3}^{2} \end{array}\right)^{2} \\ & =\left[\left(\theta_{1}-\theta_{2}\right)\left(\theta_{2}-\theta_{3}\right)\left(\theta_{3}-\theta_{1}\right)\right]^{2} \\ & =\left[\left(\left(\theta_{1}+4\right)-\left(\theta_{2}+4\right)\right)\left(\left(\theta_{2}+4\right)-\left(\theta_{3}+4\right)\right)\left(\left(\theta_{3}+4\right)-\left(\theta_{1}+4\right)\right)\right]^{2} \\ & =\operatorname{disc}(f(X-4)) \\ & =\operatorname{disc}\left(X^{3}-40 X+97\right) \\ & =-\left[4 \cdot(-40)^{3}+3 \cdot 97^{2}\right] \\ & =1957 \end{aligned}dK(1,θ,θ2)=det(1θ1θ121θ2θ221θ3θ32)2=[(θ1θ2)(θ2θ3)(θ3θ1)]2=[((θ1+4)(θ2+4))((θ2+4)(θ3+4))((θ3+4)(θ1+4))]2=disc(f(X4))=disc(X340X+97)=[4(40)3+3972]=1957
(d) We claim that if d F ( a 1 , , a n ) d F a 1 , , a n d_(F)(a_(1),dots,a_(n))d_{F}\left(a_{1}, \ldots, a_{n}\right)dF(a1,,an) is a square free integer, then a 1 , , a n a 1 , , a n a_(1),dots,a_(n)a_{1}, \ldots, a_{n}a1,,an is an integral basis of F F FFF. To see this, fix an integral basis ω 1 , , ω n ω 1 , , ω n omega_(1),dots,omega_(n)\omega_{1}, \ldots, \omega_{n}ω1,,ωn of F F FFF. Then for any 1 i n 1 i n 1 <= i <= n1 \leq i \leq n1in, there exist t i j Z t i j Z t_(ij)inZt_{i j} \in \mathbf{Z}tijZ such that a i = i = 1 n t i j ω j a i = i = 1 n t i j ω j a_(i)=sum_(i=1)^(n)t_(ij)omega_(j)a_{i}=\sum_{i=1}^{n} t_{i j} \omega_{j}ai=i=1ntijωj. Let T = T = T=T=T= ( t i j ) 1 i , j n M n ( Z ) t i j 1 i , j n M n ( Z ) (t_(ij))_(1 <= i,j <= n)inM_(n)(Z)\left(t_{i j}\right)_{1 \leq i, j \leq n} \in M_{n}(\mathbf{Z})(tij)1i,jnMn(Z). Then linear algebra gives the following relation of integers
d F ( a 1 , , a n ) = ( det T ) 2 d F ( ω 1 , , ω n ) d F a 1 , , a n = ( det T ) 2 d F ω 1 , , ω n d_(F)(a_(1),dots,a_(n))=(det T)^(2)d_(F)(omega_(1),dots,omega_(n))d_{F}\left(a_{1}, \ldots, a_{n}\right)=(\operatorname{det} T)^{2} d_{F}\left(\omega_{1}, \ldots, \omega_{n}\right)dF(a1,,an)=(detT)2dF(ω1,,ωn)
Since the left hand side is square free, we have det T = ± 1 det T = ± 1 det T=+-1\operatorname{det} T= \pm 1detT=±1. This implies that T 1 T 1 T^(-1)T^{-1}T1 has integer entries as well, thus ω 1 , , ω n ω 1 , , ω n omega_(1),dots,omega_(n)\omega_{1}, \ldots, \omega_{n}ω1,,ωn can be written as Z Z Z\mathbf{Z}Z-linear combinations of a 1 , , a n a 1 , , a n a_(1),dots,a_(n)a_{1}, \ldots, a_{n}a1,,an. Therefore, a 1 , , a n a 1 , , a n a_(1),dots,a_(n)a_{1}, \ldots, a_{n}a1,,an is an integral basis of F F FFF.
(e) Since d K ( 1 , θ , θ 2 ) = 1957 = 19 103 d K 1 , θ , θ 2 = 1957 = 19 103 d_(K)(1,theta,theta^(2))=1957=19*103d_{K}\left(1, \theta, \theta^{2}\right)=1957=19 \cdot 103dK(1,θ,θ2)=1957=19103 is square free, 1 , θ , θ 2 1 , θ , θ 2 1,theta,theta^(2)1, \theta, \theta^{2}1,θ,θ2 is an integral basis of K K KKK by (d).